

(2017 - 2018)

GWU-Lasertechnik

Waveplates

Principle of Waveplate

Waveplates (retardation plates or phase shifters) are made from material which exhibit birefringence. The velocities of the extraordinary and ordinary rays through the birefringent material vary inversely with their refractive indices. The difference in velocities gives rise to a phase difference when the two beams recombine. In the case of an incident linearly polarized beam this is given by

$$\delta = \frac{2 \cdot \pi \cdot (ne - no)}{\lambda} \cdot d$$

where:

 δ -phase difference;

d -thickness;

ne, no -refractive index of extraordinary and ordinary rays;

 λ -wavelength.

At any specific wavelength, the phase difference is given by the thickness of the retarder.

Half Waveplate

Half waveplate can be used to rotate the polarization state of a plane polarized light as shown in Figure 1.

Suppose a plane-polarized wave is normally incident on a waveplate, and the plane of polarization is at an angle θ with respect to the fast axis, as shown. After passing through the plate, the original plane wave has been rotated through an angle 2 θ .

A half-wave plate is very handy in rotating the plane of polarization from a polarized laser to any other desired plane (especially if the laser is too large to rotate). Most large ion lasers are vertically polarized. To obtain horizontal polarization, simply place a half-wave plate in the beam with its fast (or slow) axis 45° to the vertical. The $\lambda/2$ plates can also change left circularly polarized light into right circularly polarized light or vice versa.

The thickness of the half waveplate is such that the phase difference is 1/2 wavelength ($\lambda/2$, True Zero order) or certain multiple of 1/2 wavelength [(2n+1) $\lambda/2$], multiple order).

Figure 1

Quarter Waveplate

Quarter wave plate are used to turn plane-polarized light into circularly polarized light or vice versa. To do this, we must orient the wave plate so that equal amounts of fast and slow waves are excited. We may do this by orienting an incident plane-polarized wave at 45° to the fast (or slow) axis, as shown in Figure 2. When a $\lambda/4$ plate is double passed, i.e., by mirror reflection, it acts as a $\lambda/2$ plate and rotates the plane of polarization to a certain angle, i.e., 90°. This scheme is widely used in isolators, Q-switches, etc.

The thickness of the quarter waveplate is such that the phase difference is 1/4 wavelength ($\lambda/4$. true Zero order) or certain multiple of 1/4 wavelength ([(2n+1) $\lambda/4$], multiple order).

CASTECH provides many kinds of waveplates, such as Low- Order waveplate, Cemented Zero-Order waveplate, Airspaced Zero-Order waveplate, True Zero-Order waveplate , Dual wavelength waveplate *a*nd Telecom Wave Plates. Also we provide waveplates with different retardation as half-wave, quarter-wave, octadic-wave and full-wave. If you want to order the specific retardation of waveplate for your system, **CASTECH** is able to design any types of them for you.

High precision and mass production are available upon requirement for waveplates.

Multi-Order Waveplates

Specifications

Material:	Crystal Quartz
Diameter Tolerance:	+0/-0.25mm
Retardance Accuracy:	$<\lambda/300$
Clear Aperture:	\geq central 90% of diameter
Surface Quality:	20-10 scratch-dig
Wavefront Distortion:	$\lambda/10@633$ nm over the clear aperture
Parallelism:	_≤3"
Coating:	Laser Line AR Coating R<0.25%
Damage Threshold:	2MW/cm ² 2J/cm ² with 10 nsec Pulse

- Wide Temperature Bandwidth.
- CASTECH's standard coatings are available
- Custom designs for other sizes and coatings are also available upon request.

Single Wavelength Waveplates

Results Retardance at 1064nm = 90.369° (order = 3)

Half Waveplate	Quarter Waveplate
WPL-127-1/2 -λ	WPL-127-1/4-λ
WPL-150-1/2-λ	WPL-150-1/4-λ
WPL-200-1/2-λ	WPL-200-1/4-λ
WPL-254-1/2 -λ	WPL-254-1/4-λ

Standard Wavelength (λ)

Wavelength	Wavelength	Wavelength	Wavelength	Wavelength	Wavelength
248 nm	413 nm	514.5 nm	632.8 nm	800 nm	1064 nm
266 nm	441.6 nm	532 nm	647.1 nm	830 nm	1300 nm
308 nm	457.9 nm	543.5 nm	676.4 nm	850 nm	1315 nm
351 nm	488 nm	594 nm	694.3 nm	905 nm	1320 nm
354.7 nm	510.5 nm	611.9 nm	780 nm	1050 nm	1550 nm

Dual Wavelength Waveplates

Dual wavelength waveplate is widely used on Third Harmonic Generation (THG) system. When you need a NLO crystal for type II SHG ($o+e\rightarrow e$), and a NLO crystal for type II THG ($o+e\rightarrow e$), the out put polarization from SHG can not be used for THG. So you must turn the polarization to get two perpendicular polarization for type II THG. Dual wavelength waveplate works like a polarizing rotator, it can rotate the polarization of one beam and remain another beam's polarization. Also the dual wavelength waveplate can be applied to following systems:

- 1. Type II SHG + Type II THG
- 2. Type II SHG + Type I THG
- 3. Type I SHG + Type I THG

For example: we use KTP as SHG type II and LBO as THG type II, but the polarization of output beam from KTP is not optimized for THG type II. When we use a dual wavelength waveplate as drawing, it can change the 532nm beam to a special angle polarization but not change 1064nm beam at all.

Specifications

Material:	Crystal Quartz
Diameter Tolerance:	+0/-0.25mm
Retardance Accuracy:	$<\lambda/100$
Clear Aperture:	\geq central 90% of diameter
Surface Quality:	20-10 scratch-dig
Wavefront Distortion :	$\lambda/10@633$ nm over the clear aperture
Parallelism:	<i>≤</i> 3"
Coating:	Laser Line V AR Coating R<0.25%
Damage Threshold:	2MW/cm ² 2J/cm ² with 10 nsec Pulse

Order Information:

Standard Retardation

Wavelength 1-Wavelength 2	W1064-W532 (nm)	W1064-W355 (nm)	W532-W266 (nm)	W532-W355 (nm)
Retardation 1-Retardation 2	λ-λ/2	λ/2-λ	λ/4-λ/2	λ/2-λ/4

Note :

- Custom designs for other sizes ,coatings and holders are also available upon request.
- CASTECH's standard coatings are available upon request.

Optically Contacted Zero-Order Waveplates

Specifications

Material:	Crystal Quartz
Diameter Tolerance:	+0/-0.25mm
Retardance accuracy:	$<\lambda/300$
Clear Aperture:	\geq central 90% of diameter
Surface Quality:	20-10 scratch - dig
Wavefront Distortion:	$\lambda/10@632.8$ nm over the clear aperture
Parallelism:	≤3″
Coating:	R<0.25% at design wavelength
Damage Threshold:	2MW/cm ² 2J/cm ² with 10 nsec

- High Damage Threshold
- Wide Temperature Bandwidth
- Broad Spectral Bandwidth

Order Information

Optically Contacted Zero-Order Waveplates

Half Waveplate	Quarter Waveplate
WPZO-100-1/2-λ	WPZO-100-1/4-λ
WPZO-127-1/2-λ	WPZO-127-1/4-λ
WPZO-200-1/2-λ	WPZO-200-1/4-λ
WPZO-254-1/2-λ	WPZO-254-1/4-λ

Standard Wavelength (λ)

• Please see page 39

Note:

- Custom designs for other sizes ,coatings and holders are also available upon request.
- CASTECH's standard coatings are available.

Air Spaced Zero-Order Waveplates

Specifications

Material:	Crystal Quartz
Diameter Tolerance:	+0/-0.25mm
Retardance accuracy:	$<\lambda/300$
Clear Aperture:	\geq central 90% of diameter
Surface Quality:	20-10 scratch - dig
Wavefront Distortion:	$\lambda/10@632.8$ nm over the clear aperture
Parallelism:	≤3"
AR Coating:	R<0.25% per surface at design wavelength
Damage Threshold:	2MW/cm ² 2J/cm ² with 10 nsec

- High Damage Threshold
- Wide Temperature Bandwidth
- Broad Spectral Bandwidth
- CASTECH's standard coatings are available
- Custom designs for other sizes and coatings are also available upon request

Order Information

Air Spaced Zero-Order Waveplates

Half Waveplate	Quarter Waveplate
WPZA-100-1/2-λ	WPZA-100-1/4-λ
WPZA-127-1/2-λ	WPZA-127-1/4-λ
WPZA-200-1/2-λ	WPZA-200-1/4-λ
WPZA-254-1/2-λ	WPZA-254-1/4-λ

- Standard Wavelength ,please see page 39.
- Standard Mounts and Holders ,please see page 48.

True Cemented Zero-Order Waveplates

Specifications

Material:	Crystal Quartz
Substrate Material:	BK7
Diameter Tolerance:	+0/-0.2mm
Clear Aperture:	\geq central 90% of diameter
Retardance Accuracy:	$<\lambda/300$
Surface Quality:	20-10 scratch - dig
Wavefront Distortion	$\lambda/8@632.8$ nm over the clear aperture
Parallelism:	≤ 10 "
AR Coating:	R<0.25% at design wavelength
Damage Threshold	500W/cm ² 4J/cm ² with 20 nsec

Order Information

Cemented True Zero-Order Waveplates

Half Waveplate	Quarter Waveplate
WPCT-100-1/2-λ	WPCT-100-1/4-λ
WPCT-127-1/2-λ	WPCT-127-1/4-λ
WPCT-200-1/2-λ	WPCT-200-1/4-λ
WPCT-254-1/2-λ	WPCT-254-1/4-λ

Note:

• Custom designs for other sizes and coatings are also available upon request.

• CASTECH's standard coatings are available.

True Zero-Order Waveplates

Specifications

Material:	Crystal Quartz
Diameter Tolerance:	+0/-0.2mm
Retardance Accuracy:	$<\lambda/300$
Clear Aperture:	\geq central 90% of diameter
Surface Quality:	20-10 scratch - dig
Wavefront Distortion :	$\lambda/8@632.8$ nm over the clear aperture
Parallelism:	≤10"
Coating:	R<0.25% per surface at design wavelength
Damage Threshold:	500W/cm ² 4J/cm ² with 20 nsec

Order Information

True Zero-Order Waveplates

Half Waveplate	Quarter Waveplate
WPT-100-1/2-λ	WPT-100-1/4-λ
WPT-127-1/2-λ	WPT-127-1/4-λ
WPT-200-1/2-λ	WPT-200-1/4-λ
WPT-254-1/2-λ	WPT-254-1/4-λ

Note:

- Custom designs for other sizes, coatings and holder are also available upon request.
- CASTECH's standard coatings are available.

Achromatic Zero-Order Waveplates

Achromatic Zero-Order waveplate is made from two different substrate Material such as crystal quartz and magnesium fluoride. For the single material waveplates the working wavelength is very limited because of the dispersion of the material. While Achromatic Zero-Order Waveplate use two different kinds of material, the dispersions of the birefringence are also different. Hence such waveplate is not sensitive to the wavelength change.

CASTECH design Achromatic Zero-Order Quartz-MgF2 waveplates with working wavelength range larger than 300nm and retardation accuracy better than λ /50 for λ /2 waveplate and better than λ /100 for λ /4 waveplate.

Main advantages:

- Extremely broad wavelength ranges
- High damage threshold for Air-spaced Achromatic Zero-Order waveplate
- Low sensitivity within the designed wavelength
- Retardation tolerance up to $\lambda / 100$ over the wavelength range

CASTECH can offer two kinds of Achromatic Zero-Order Waveplates:

Air Spaced and Optically Contacted Achromatic Zero-Order Waveplates

Achromatic Zero-Order Waveplates

Specifications

Material:	Crystal Quartz and Magnesium Fluoride
Diameter Tolerance:	+0/-0.2mm
Retardance Accuracy:	better than $\lambda/50$ for $\lambda/2$ achromatic waveplates better than $\lambda/100$ for $\lambda/4$ achromatic waveplates
Clear Aperture:	\geq central 90% of diameter
Surface Quality:	40/20 scratch / dig
Wavefront Distortion:	$\lambda/4@632.8$ nm over the clear aperture
Parallelism:	≤10"
Coating:	AR coating at design wavelength
Damage Threshold:	500W/cm ² 4J/cm ² with 20 nsec

Optically Contacted Achromatic Zero-Order Waveplate

Air-Spaced Achromatic Zero-Order Waveplate

Order Information

Achromatic Zero-Order Waveplates

Optically Contacted Achromatic Zero-Order Waveplate		Air-Spaced Achromatic Zero-Order Waveplate		
Half Achromatic Waveplate	Quarter Achromatic Waveplate	Half Achromatic Waveplate	Quarter Achromatic Waveplate	
WPAO-127-1/2-λ	WPAO-127-1/4-λ	WPAA-127-1/2-λ	WPAA-127-1/4-λ	
WPAO-150-1/2-λ	WPAO-150-1/4-λ	WPAA-150-1/2-λ	WPAA-150-1/4-λ	
WPAO-200-1/2-λ	WPAO-200-1/4-λ	WPAA-200-1/2-λ	WPAA-200-1/4-λ	
WPAO-254-1/2-λ	WPAO-254-1/4-λ	WPAA-254-1/2-λ	WPAA-254-1/4-λ	

Standard Wavelength Ranges(λ)

400-700 nm	700-1000 nm	1200-1650 nm
------------	-------------	--------------

Note:

- Custom designs for other sizes and coatings are also available upon request.
- CASTECH's standard coatings are available.
- Other waveplates with different wavelength range (between 400-2100nm) are also available upon request, please contact CAETECH for more information.

Telecom Waveplates

Specifications

Material:	Crystal Quartz	
Diameter Tolerance:	+0/-0.1mm	
Design Wavelength:	1550nm	
Retardance Accuracy:	better than $\lambda/300@1550$ nm	
Surface Quality:	40/20 scratch / dig	OTIC D
Wavefront Distortion:	$\lambda/4@632.8$ nm over the full aperture	Optical Axis Width
Parallelism:	≤3"	
AR Coating:	Both surfaces R < 0.25% @ 1525 – 1565 nm	Telecom Waveplates
Damage Threshold:	500W/cm ² 4J/cm ² with 20 nsec	

Order Information

Telecom waveplates are designed and manufactured specifically to meet the demanding requirements of telecom component designers.

CASTECH provides telecom waveplate with many kinds of sizes , they are 91.5µm thick for the half-waveplate and 45.7µm thick for the quarter-waveplate at 1550nm. The telecom waveplates are AR coated from 1525nm to 1565nm in order to minimize surface reflection losses.

Standard Telecom Waveplates

size	Design Wavelength	AR Coating	Retardation
Kinds of size 1550 nm		R < 0.25% @ 1525 – 1565 nm	$\lambda/4$ or $\lambda/2$

Note:

• Custom designs for other specifications and coating are also available upon request.

Mounts and Holders for Waveplates

Ring Mount

Material and finished:	Black anodized aluminum	
Outside Diameter(D) Tolerance:	± 0.1mm	
Thickness (t) Tolerance:	± 0.1mm	
Waveplate Diameter (Ø) Tolerance:	+0.15,-0.0mm	

Part No.	D (mm)	Ø (mm)	Clear Aperture (mm)	Thickness (mm)
RM-01	25.4	10.0	9.0	6.0
RM-02	25.4	12.7	11.5	6.0
RM-03	25.4	15.0	13.5	6.0
RM-04	30.0	20.0	18.0	6.0
RM-05	30.0	25.4	22.8	6.0

Rotating Holder

Material and finished:	Black anodized aluminum
Rotation Accuracy:	1°
Dimension Tolerance:	\pm 0.1mm

Order Information

Part No.	Outside Dimension (mm)		Installation Dimension (mm)		Matched Screw	
	Matched Screw Diameter	Height	Length	Diameter	Thickness	Diameter (mm)
RH-01	64.39	60.0	16.0	25.4	6.0	6.35
RH-02	64.39	60.0	16.0	30.0	6.0	6.35

• Custom designs for other sizes of mount are also available.

福建福晶科技股份有限公司 CASTECH INC.

ADD: Building No.9, Zone F, 89 Ruan jian Avenue, Fuzhou, Fujian 350003, China TEL: +86-591-83710533 FAX: +86-591-83711593 E-mail: SALES@CASTECH.COM

GWU-Lasertechnik Vertriebsges. mbH

Bonner Ring 9 50374 Erftstadt Germany Fon +49 . (0)22 35 . 9 55 22-0 Fax +49 . (0)22 35 . 9 55 22-99 info@gwu-group.de www.gwu-group.de

www.gwu-group.de